Dramix® safe concrete reinforcement for safe shotcrete structures

Test, specify and build
INTRODUCTION

My aim is to familiarize the reader with the behaviour of steel fibre reinforced concrete (SFRC), to draw his attention to the specific characteristics of this product when applied as temporary reinforcement, underline the importance of the performance criteria described by the EN standard and propose a relevant technical solution to reach together a better quality and safety on each job site.

This text is meant primarily for those who are active in the construction market (clients, contractors, consulting engineers, construction firms), more specifically in the field of underground structures constructed by traditional method (NATM).

Initially, shotcrete was applied either plainly or reinforced with conventional reinforcing steel-welded meshes or even occasionally with chain link meshes. It was, however, not until the early seventies that the first experimental work was undertaken with Steel Fibre Reinforced Shotcrete (SFRS).

SFRS is defined as a mortar or concrete, containing discontinuous discrete steel fibres, which are pneumatically projected at high velocity on to a surface.

Since then, SFRS has been used extensively in most of the world’s industrialized nations, for a wide variety of applications. Uses of SFRS have varied from rock slope stabilization and underground support to structural rehabilitation.

Multiple research studies and tests on the behaviour of steel fibre reinforced concrete have been carried out in recent years in various countries. They have greatly contributed to a better characterization of Steel Fibre Reinforced Concrete (SFRC), and have thus allowed to gain a better understanding of the behaviour of this material and to specify minimum performance requirements for each project.

During the period 2005-2007, the European Standardization Organization CEN issued a large number of standards on sprayed concrete.

The publication of European standards specifically dealing with steel fibres, as well as the sprayed concrete application, allow to define performance criteria and to specify minimum relevant requirements for each project. Steel fibre, and especially Dramix® reinforced concrete, has been the reference for tunnel reinforcement for more than 25 years and will continue to be in the future.

Special thanks to Ann Lambrecht & Gan Choon Chee for their constructive inputs.
1. APPLICATION FIELD

This document discusses design, test methods and application of sprayed concrete with Dramix® steel fibre concrete, more particularly when used in tunnels as temporary support.

This guideline can only be used for steel fibre reinforced shotcrete, and not for synthetic fibre concrete - with low modulus of Young (E < 35 Gpa) - due to reasons described in "2.3.2.1 Energy absorption". The evaluation of the rock quality and associated design requirements are described in "3. System performance requirements".

2. MATERIALS

2.1. Concrete:

Concrete quality in accordance with EN 206, produced and delivered according to local concrete standards:
- Concrete quality: C30/37
- Maximum aggregate size: 12 mm.

The grading of aggregates will be in accordance with the applicable standards. Sprayed concrete mix design is determined by the same principles which apply to concrete mix design. The prime factors controlling strength and quality are the water/cement ratio, the grading of the aggregates and the degree of consolidation achieved.

There are however a number of design considerations in which sprayed concrete differs from conventional structural reinforced concrete. The major differences lie in the aggregate grading and the cementitious content of the sprayed concrete design.

The concrete composition must be engineered in order to obtain homogeneous distribution of the steel fibres and good finishing ability.

For detailed information, please consult our recommendations on handling, dosing and mixing, as well as our product data sheets.

2.2. Steel fibres:

Dramix® steel fibres are designed especially for the reinforcement of concrete. They are made of prime quality hard-drawn steel wire to ensure high tensile strength at extreme close tolerances. Provided with hooked ends, they deliver optimum anchorage.

Minimum fibre recommendations for sprayed concrete in tunnel applications:

1. Fibres to comply with European standard EN 14889-1: minimum dosage (kg/m³) required per fibre type

2. Fibres with CE marking system 1, steel fibre for structural use (conform EN 14889-1 - 2006)

3. Fibres out of drawn wire, with a tensile strength of steel wire > 1,000 MPa min

4. Dimensional tolerances in accordance with the table below:

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Deviation of the individual value relative to the declared value</th>
<th>Deviation of the average value relative to the declared value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length and developed height > 30 mm</td>
<td>l, l_d (if applicable)</td>
<td>± 10 %</td>
<td>± 5 %</td>
</tr>
<tr>
<td>≤ 30 mm</td>
<td>l, l_d (if applicable)</td>
<td>± 5 %</td>
<td>± 1,5 mm</td>
</tr>
<tr>
<td>(Equivalent) diameter > 0,30 mm</td>
<td>d</td>
<td>± 10 %</td>
<td>± 5 %</td>
</tr>
<tr>
<td>≤ 0,30 mm</td>
<td>d</td>
<td>± 10 %</td>
<td>± 0,015 mm</td>
</tr>
<tr>
<td>Length/diameter ratio</td>
<td>λ</td>
<td>± 15 %</td>
<td>± 7,5 %</td>
</tr>
</tbody>
</table>

The length shall be measured with a marking gauge (accuracy of 0,1 mm).

In an irregular cross section, the developed length of the fibre shall also be determined to calculate the equivalent diameter. Straightening of the fibre is necessary, it shall be done by hand or if this is not possible, by hammering on a level of wood, plastic material or copper using a hammer or a similar tool. While straightening, the cross section must stay unchanged.

The diameter of the fibre shall be measured with a micrometer, in two directions, approximately at right angles, to an accuracy of 0,01 mm. The fibre diameter shall be the mean of the two measured diameters.

5. Best anchoring system: hooked ends for optimum anchorage

6. Fibre length: in the range of 30-35 mm

7. Maximum fibre length: 2/3 of the hose diameter of the spraying machine

8. Minimum fibre length: 2 times the maximum coarse aggregate size

9. Glued fibres for improving homogeneous distribution
2.3. Steel fibre concrete:

The performance of Dramix® reinforced concrete is mainly determined by the following characteristics:

- The performance of the fibre in the matrix (geometry, length/diameter ratio, method of anchorage, tensile strength, etc.)
- The performance of the concrete matrix
- The amount of fibres in the mix

In order to define the steel fibre concrete specification, a three steps analysis must be made.

1. Minimum dosage for a needed fibre overlap.
2. Minimum total fibre length.
3. Dosage based on performance:
 - Energy absorption
 - Residual strength

2.3.1 Minimum dosage in situ based on minimum overlap:

According to the European standard EN 14487-1, the average distance (s) between steel fibres should be lower than 0.45 l, in order to ensure a minimum overlap between fibres.

The value for a minimum overlap between fibres may be estimated as:

\[s = \frac{3 \pi d_f}{4 \rho_f} \]

Where:
- \(l_f \) is the length of the fibre
- \(d_f \) is the equivalent diameter of the fibre
- \(\rho_f \) is the fibre percentage

\(s \) should be lower than 0.45 \(l_f \) to ensure a minimum overlap.

The formula and “s” limits are taken from the thesis of D.C. Mc Kee, University of Illinois, Urbana 1969: “The properties of an expansive mortar reinforced with random wire fibres.”

2.3.2 Minimum total fibre length in situ:

In addition to the requirement of the minimum overlap according to the Mc Kee theory, Bekaert also recommends a minimum total length of wire fibre.

Indeed, in order to ensure the minimum network effect to provide a specific multicrack process generating the redistribution of the loads through the crack-bridging steel, we recommend a minimum steel fibre length per cubic meter concrete of 10,000 ml/m³.

This recommendation is based on two decades of experience, during which a great number of analyses have been carried out, observed on the plate test described in the “2.3.3.1. Energy absorption”.

<table>
<thead>
<tr>
<th>Aspect ratio (l/d)</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum dosage (kg/m³) when s < 0.45 (l_f)</td>
<td>43 kg/m³</td>
<td>34</td>
<td>28</td>
<td>23</td>
<td>19</td>
<td>16 kg/m³</td>
</tr>
</tbody>
</table>

Minimum dosages of steel fibres based on different aspect ratios and steel fibre spacing.

Example to reach three criteria: CE-minimum performance level, Mc Kee “2.3.1.” & minimum total fibre length “2.3.2.”

The crack pattern observed on the plate test (see “2.3.2”) should be as displayed:
2.3.3. Performance criteria:

The European standard EN 14487-1 mentions the different ways of specifying the ductility of fibre reinforced sprayed concrete in terms of residual strength and energy absorption capacity. It also mentions that both ways are not exactly comparable.

The residual strength can be prescribed when the concrete characteristics are used in a structural design model. The energy absorption value measured on a panel can be prescribed when - in case of rockbolting - emphasis is put on energy which has to be absorbed during the deformation of the rock. (Especially useful for primary sprayed concrete linings).

2.3.3.1 Energy absorption:

In order to check the structural behaviour of SFRC in a tunnel construction, a related test has been developed in France by the National Railway Company SNCF and the former Alpes Essais Laboratory.

This test slab is supported on the four edges and a central point load is applied through a contact surface of 100 x 100 mm². The load deflection curve is recorded and the test is going on until a deflection of 25 mm at the central point of the slab is reached.

The test plate usually used (600 x 600 x 100 mm panels) (see EN 14488-5) is designed to determine the energy absorbed from the load/deflection curve.
The load-displacement curve indicates that during the test several cracks are developed. The steel fibres bridging the cracks are generating a perfect load distribution.

Once the peak has been reached and the maximum load redistribution effect has been realized, the fibres are being pulled out. Fibre shape and steel strength determine whether the fibres will break or preferably will be pulled out.

From the load-deflection curve, a second curve is drawn resulting in the absorbed energy (Joules) as a function of the slab deformation or deflection. This approach tries to simulate the real lining behaviour. It gives a good idea of the load bearing capacity and the energy absorption of a shotcrete lining.

Instead of determining a material characteristic, which requires a proper design model in order to calculate the allowable solicitation of the structure, the French approach allows to skip that step and immediately check the energy absorption and the load bearing capacity of the lining.

The EN slab test allows to check the suitability of a material to be used under given circumstances and to control its behaviour in an ultimate state. It is also a very efficient way to compare different fibre types and dosages related to the intended purpose.

Numerical values to be recommended were obtained from corresponding slab tests using wire mesh types, which have proven in the past to be efficient under given loading conditions. If the capacity for energy absorption of the material is specified, it has to be determined using a slab specimen as per standard EN 14 488-5.

Conformity for energy absorption capacity is obtained when at least two of three test panels have an energy absorption capacity not lower than the specified energy absorption capacity according to the specified class given.

For the same concrete matrix, the amount of absorbed energy is significantly influenced by the fibre type (e.g. aspect ratio, length to diameter, anchorage type) and the fibre dosage. The better the aspect ratio and fibre content, the better the performance of the SFRS.

2.3.3.2. Residual strength:

Different international standards propose a clear procedure to determine the residual strength as:

a) ASTM standards

ASTM C1609/C1609M-05 can be used to determine the post-crack flexural strength of SFRS. In this test method, the post-cracking strengths are termed residual strengths, and are reported at deflections of a span/600 and a span/150. The residual strengths required to be reported for a typical 4 inch (100 mm) deep specimen are termed f'_{f100} and f'_{f200}, where the subscript indicates the specimen depth in millimeters, and the deflection. In this test method, the first-peak and ultimate strengths (modulus of rupture) are also reported. ASTM C1399 may be used to determine the average residual strength of an SFRS beam specimen. The beam is cracked in a controlled manner, then the load versus deflection curve is generated. Residual loads are determined and averaged at specified deflections, and the engineering strength after cracking is reported.

b) EN specification

Classification of residual strength is based on strength level specification at a certain deformation range in accordance with EN 14488-3. It is denoted by the combination of symbols for the specified deformation range. This means that the residual strength shall exceed 3 Mpa, between 0.5 mm and 1 mm deflection.

The specifications regarding residual strength are related to the deformation conditions of the rock mass. A higher degree of rock deformation will demand higher deflection capabilities of the concrete lining.

The purpose of the different deformation levels is to give flexibility to the designers in the choice of the required deformation of the sprayed concrete under service conditions. For design purposes, the deflection limit of the deformation level can be considered in terms of the equivalent angular rotation for a beam cracked at mid span.

(e.g. for a beam of 450 mm x 125 mm x 75 mm test in accordance with EN 14488-3):

<table>
<thead>
<tr>
<th>Deformation Level</th>
<th>Residual Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>f'_{f100}</td>
</tr>
<tr>
<td>D2</td>
<td>f'_{f200}</td>
</tr>
<tr>
<td>D3</td>
<td>f'_{f300}</td>
</tr>
</tbody>
</table>

Correspondingly, four residual strength levels, S1 to S4, have been defined, which in combination with applicable deformation range can be specified in terms of residual strength class.

Three typical rock deformation ranges have been identified:

- D1 corresponding with a deformation = 1/250
- D2 corresponding with a deformation = 1/125
- D3 corresponding with a deformation = 1/56

Based on this plate test, three SFRS classes (E500, E700, and E1000) are defined:

- 500 Joules for sound ground/rock conditions
- 700 Joules for medium ground/rock conditions
- 1,000 Joules for difficult ground/rock conditions

These values are proposed for a concrete class C30/37, usually specified for a temporary support. Compressive strengths with a too low or too high strength class may have undesired side effects.
An illustrative example is given in Figure 6 for a typical fibre reinforced sprayed concrete beam. This beam fulfills the requirement for residual strength class D1S3 (as well as D2S2 and D2S1).

<table>
<thead>
<tr>
<th>Deformation range</th>
<th>Strength level (minimum strength, MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>S1 0.5 to 1</td>
</tr>
<tr>
<td>D2</td>
<td>S2 0.5 to 2</td>
</tr>
<tr>
<td>D3</td>
<td>S3 0.5 to 4</td>
</tr>
<tr>
<td></td>
<td>S4</td>
</tr>
</tbody>
</table>

Conformity of residual strength is obtained when:
1. The mean value of test results obtained from 3 test specimens fulfills the requirement for the specified residual strength boundary up to the deflection limit appropriate for the specified deformation level.
2. No individual test result shall in any point (corresponding to the specified deformation level) show a residual stress that is lower than 10% of the stress corresponding to the boundary of the specified strength class.

c) Alternative Bekasert test proposal

In order to improve the approach, a new test method must fulfill following requirements:
- The geometry and dimensions of the specimens, as well as the casting method adopted, should ensure distribution of the fibres in the matrix, which is as close as possible to that encountered in the actual structure.
- The obtained mechanical property will serve as input for the dimensioning method.
- The dimensions of the test specimen should be acceptable for handling within a laboratory (no excessive weights or dimensions).
- The test should be compatible, as far as the experimental means permit, with use in a large number of normally equipped laboratories (no unnecessary sophistication).
- The geometry should be the same as in the plate test.
- There could also be sprayed on the job site.
- There should be lower scatter than with the current standardised beam test.

Characterization test:

Test specimen geometry and dimension: a 600 mm square by 100 mm thick specimen.

This 3-point bending test is carried out on the test specimen, previously notched in its middle. The distance between the lower supports is 500 mm. The rough surface is the upperside in the test.

The notch is 2 mm thick (saw cut) and 1 cm deep. A movement sensor bridges the notch in its centre. The test is carried out at an imposed crack opening rate. It generates the Force-Crack opening curve.

Based on this test, the following data will be available for the engineer:

Analogically to EN 14651, one can define the following flexural strength:

\[f_L = \frac{3}{2} \times F_L \times \frac{l}{b} \left(\frac{h_{sp}}{h_{sp}} \right)^2 \]

where \(F_L \) = max load F before line 0.05 mm

Residual flexural strengths

\[f_{res,1} = \text{residual strength on CMOD = 0.5 mm} \]
\[f_{res,2} = \text{residual strength on CMOD = 1.5 mm} \]
\[f_{res,3} = \text{residual strength on CMOD = 2.5 mm} \]
\[f_{res,4} = \text{residual strength on CMOD = 3.5 mm} \]

\[f_{res,i} = \frac{3}{2} \times F_{res,i} \times \frac{l}{b} \left(\frac{h_{sp}}{h_{sp}} \right)^2 \]

where \(F_{res,i} \) = load F corresponding with the CMOD or deflection on these points.
Due to the very low E-modulus of macro-synthetic fibres and the mode of failure observed with this type of fibres, the plate test is not sufficient to compare steel fibres and macro-synthetic fibres. Another criterion based on the residual strength, as D1S3, must be added according to EN14487-1.

Furthermore, macro-synthetic fibres tend to creep 7 to 20 times more than steel fibres after 1 year. That is why the designer should only recommend steel fibres for this application. Creep test info sheet available on www.bekaert.com/building.

In short: It is also well known that the bonding of a synthetic fibre in concrete matrix performs poorly. The age of the concrete has a considerable impact on this bond mechanism (any improvement is very noticeable from the bottom upwards). This means that the older the concrete the better the synthetic fibres are bonded and the better its mechanical strength. But when you need a temporary support, at young concrete age, you can’t expect any relevant performance of synthetic fibre concrete.
3. SYSTEM PERFORMANCE REQUIREMENTS

Rock quality and stabilizing measures:

Evaluation of general rock stability should be based on geological mapping of the excavated rock cavern. The stability may be calculated from the registered rock parameters and forces acting in the system.

Several empirical classification systems have been developed based on data from earlier excavations. The two most widely used rock mass classifications are Bieniawski’s RMR (1976, 1989) and Barton et al.’s Q (1974).

Both system methods incorporate geological, geometric and engineering parameters to arrive at a quantitative value for the rock mass quality.

Q-system:

The Q-system developed by Barton et al.’s (1974, 1993) is internationally by far the most applied classification system and is based on the following parameters:

- RQD Rock quality designation
- Jn Joint set number
- Jr Joint roughness number
- Ja Joint alteration number
- Jw Joint water reduction factor
- SRF Stress reduction factor

The relation between the Q values and the recommended stabilizing measures is given in detail in “fig. 10 Q-system”.

REINFORCEMENT CATEGORIES

- Unsupported
- Spot bolting, sb
- Systematic bolting, B
- Systematic bolting, (and unreinforced shotcrete, 4-10 xm), B(+s)
- Fibre reinforced shotcrete and bolting, 5-9 cm, Sfr+B
- Fibre reinforced shotcrete and bolting, 9-12 cm, Sfr+B
- Fibre reinforced shotcrete and bolting, 12-15 cm, Sfr+B
- Fibre reinforced shotcrete > 15 cm, reinforced ribs of shotcrete and bolting, Sfr+RRs+B
- Cast concrete lining, CCA

(references on request at: infobuilding@bekaert.com)

E=700J & E= 1.000J: The energy absorption in fibre reinforced concrete at 25 mm bending during the plate test according to EN 14488-5.

The energy absorption in the Barton Chart should be determined exclusively with the EN plate with reference concrete type C30/37.

The six parameters are assigned numerical values according to their influence on the stability and entered in the following formula:

\[
Q = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF}
\]

The energy absorption in fibre reinforced concrete at 25 mm bending during the plate test according to EN 14488-5.

Relation between cavern type and the ESR value:

- Temporary mines, etc. 3,5
- Vertical shafts, rectangular and circular respectively 2,0 – 2,5
- Water tunnels, permanent linings, addits... 1,6
- Storage caverns, road tunnels with little traffic, access tunnels... 1,3
- Power stations, road and railroad tunnels with heavy traffic, emergency shelters 1,0
- Nuclear power plants, railroad stations, sports arenas... 0,8

Steel fibre reinforced concrete
Sprayed concrete can either be applied as a dry mix or as a wet mix:

For a C30/37 concrete class:

<table>
<thead>
<tr>
<th>Energy absorption class</th>
<th>Fibre type</th>
<th>Dosage in the Wet mix method</th>
<th>Dosage in the Semi dry mix method</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 700</td>
<td>Dramix® RC 65/35 BN</td>
<td>25 kg/m³</td>
<td>30 kg/m³</td>
</tr>
<tr>
<td>E 1000</td>
<td>Dramix® RC 65/35 BN</td>
<td>35 kg/m³</td>
<td>40 kg/m³</td>
</tr>
</tbody>
</table>

To understand the role of a temporary support:

While driving a tunnel, the existing, primary balance of forces in the rock mass will be changed into a new, secondary and also stable state of balance. This can only be achieved through a succession of intermediate stages accompanied by various stress distribution processes.

Rock deformation control is a main issue:

a) On one hand, deformation should be kept to a minimum so that the primary state of stability and the compressive strength of the rock are not weakened more than is inevitable.

b) On the other hand, deformation is actually desirable to the extent that the rock formation itself acts as an overall ringlike support, minimizing costs for excavation and supports. Sprayed concrete, particularly the primary lining, has a fast support role.

Strength after a few hours, even after a couple of minutes, may be more important and more critical than the 28-days strength. If not, one needs to change the design philosophy.

Tests on the job site should confirm this dosage with the concrete mix used for the project.

This dosage proposal is based on experience and on a great number of test results, taking into account the percentage of lost fibres due to the rebound:

- Dry method 20% (15% to 30%)
- Wet method 10% (5% to 15%)

Mind: the value of energy absorption can be increased by using a higher concrete strength at 28 days during the characterization test. This should not be a target. Indeed, for safety reasons, we aim at reaching a high level of ductility and semi-rigid temporary support. Maximum compressive strength for the characterization test should not exceed C30/37. Strength after a few hours, even after a couple of minutes, may be more important and more critical than the 28-days strength. If not, one needs to change the design philosophy.

The practical experience on many sites as well as test results in independent laboratories clearly confirm that there are no problems with the membrane/protection sheets in combination with steel fibre reinforced sprayed concrete, such as Dramix® RC-65/35-BN.

A test report is available on request: infobuilding@bekaert.com

Dramix® steel fibres can be seen as a proven technology to create durable solutions.

Two different cases are to be considered when analyzing the corrosion of metallic fibres and their behaviour:

- The fibre crosses a crack emerging on the surface. The bearing capacity of the SFRC is not significantly affected by crack openings of 250 μm and less.

It has to be underlined that the problem of stains, as referred to above, can be almost entirely eliminated by:

- Optimizing the SFRC formulation. These mixes are then sufficiently rich in cement paste to avoid any fibres cropping out on the surface.

- Using metallic fibres which enhance the corrosion resistance, such as Dramix® Green.

Please request our specific product data sheet.
7. QUALITY CONTROL

Production control comprises all measures necessary to maintain and regulate the quality of the sprayed concrete in conformity with the specified requirements.

Production control includes:
- Inspection of constituent materials
- Inspection of the basic mix
- Inspection of sprayed concrete properties

The characterization tests concerning the materials, the freshly mixed concrete and the hardened concrete all constitute the full identity sheet for a given SFRC. They are performed once only at the beginning of each job site which uses SFRC. These tests are executed in laboratory.

Table - Control fibres sprayed concrete properties - Extract from EN 14487-1

<table>
<thead>
<tr>
<th>TYPE OF TEST</th>
<th>INFERENCE / DEFICIENCY</th>
<th>Strengthening of ground</th>
<th>Repair and upgrading</th>
<th>Free-standing structures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category 1</td>
<td>Category 2</td>
<td>Category 3</td>
</tr>
<tr>
<td>1 Water/bond ratio of fresh concrete</td>
<td>By calculation or by test method</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>2 Accelerator</td>
<td>From receipt of quality-claimed accelerators</td>
<td>pC4p EN 464-7</td>
<td>1/1.000 m³</td>
<td>1/500 m³</td>
</tr>
<tr>
<td>3 Fibre content in the fresh concrete</td>
<td>pC4p EN 464-7</td>
<td>min 1</td>
<td>1/500 m³ or 1/100 m³</td>
<td>1/250 m³ or 1/500 m³</td>
</tr>
<tr>
<td>4 Strength test of young sprayed concrete</td>
<td>pC4p EN 14488-2</td>
<td>1/500 m³ or 1/2 months</td>
<td>1/100 m³ or 1 month</td>
<td>1/200 m³ or 2 months</td>
</tr>
<tr>
<td>5 Compressive strength</td>
<td>EN 12390-1</td>
<td>1/300 m³ or 1/500 m³</td>
<td>1/200 m³ or 1/500 m³</td>
<td>1/100 m³ or 1/500 m³</td>
</tr>
<tr>
<td>6 Density of hardened concrete</td>
<td>EN 12390-7</td>
<td>When testing compressive strength</td>
<td>When testing compressive strength</td>
<td>When testing compressive strength</td>
</tr>
<tr>
<td>7 Resistance to water penetration</td>
<td>EN 13300-8</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
</tr>
<tr>
<td>8 Tensile bond resistance</td>
<td>See footnote (4)</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
<td>1/1,000 m³ or 1/2,500 m³</td>
</tr>
<tr>
<td>9 Bond strength</td>
<td>EN 1524-1</td>
<td>1/2,500 m³</td>
<td>1/1,250 m³</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) For ground strengthening
(2) For repair
(3) This test is alternative to the one in line 4 when it is not practical to determine the fibre content from the fresh sprayed concrete.
(4) As no European Standard on this issue is available at the publication of this document, national standards apply.

Main requirements for hardened steel fibre reinforced concrete characterisation test:

Fibre content:
The fibre content shall be determined from a hardened sample in accordance with EN 14 488-7, when it is not practical to determine it from the fresh sprayed concrete. The sample shall be taken from in situ material unless otherwise specified.

Energy absorption capacity:
The energy absorption capacity shall be expressed as the average energy absorption capacity, determined in accordance to EN 14 488-5. The specified energy absorption for the required class shall meet the requirements of the project. Usually, the test is performed at 28 days.

Residual strength (if required by the project):
- The residual strength class of fibre reinforced concrete shall be determined for a specified deformation level. The stress-deformation curve shall be determined in accordance with EN 14 488-3 or ASTM C1609/C1609M or a three-point bending test on a plate (600 x 600 x 100) sprayed in situ
- The specified residual strength for the required class shall meet the requirements of the project
- The test is normally performed at 28 days, and this before the start and during the construction period

8. STANDARD SPECIFICATION TEXT

Minimum specification points:

1 Fibres
- Fibres to comply with European Standard EN 14889-1
- Fibres with CE marking
 - Fibres out of drawn wire, with a tensile strength of steel wire > 1,000 MPa min.
 - Dimensional tolerances according to EN 14889-1
 - Fibre length: 30 or 35 mm

2 Performance
- Minimum total wire length/m³ should be 10,000 ml (in situ) in order to guarantee the minimum network effect.
- Minimum overlap according to McKee Theory (I/d 45 = 16 kg/m³ in situ, I/d 55 = 23 kg/m³ in situ, I/d 40 = 43 kg/m³ in situ).
- The minimum class should be E 700 (700 joules minimum) for a C30/37.
- When an additional requirement for the residual strength is required:
 - Minimum residual strength S3D1 for a reference concrete C30/37
 - Strength level > 3 MPa for a deflection of 1 mm max

3 Fibre concrete
- Glued fibre for optimal pumpability and to ensure a good distribution and homogeneity in the concrete.
 It is prohibited to use loose steel fibres that cause balls during mixing.
 - Type of concrete: class C30/37

4 Quality
- Performance and control criteria should be specified following the EN 14487-1, taking account the requirement of the project.

Download at: www.bekaert.com/building
9. BIBLIOGRAPHY

- AFTES: GT6R1A3, 1999
 Recommendation for fibre reinforced sprayed concrete technology and practice
- ASTM C1609/C1609M-07:
 Standard Test Method for Flexural Performance of Fiber Reinforced Concrete
- ITA reports:
 Shotcrete for Underground Support: A state of the art report with focus on Steel-fibre Reinforcement, T. Franzen, 1992
- Q-system Advance for sprayed lining:
 Tunnel and Tunnelling International January 2003
- EFNARC:
 Recommendation for sprayed concrete
- Tunneling is an art:
 Marc Vandewalle, NV Bekaert SA, Belgium, 2005
- EN 14487-1:
 Sprayed concrete, definition, specification and conformity
- EN 14488-1:
 Testing sprayed concrete: Sampling fresh and hardened concrete
- EN 14488-2:
 Testing sprayed concrete, part 2: Comprehensive strength of young sprayed concrete
- EN 14488-3:
 Testing sprayed concrete, part 3: Flexural strengths of fiber reinforced beam specimens
- EN 14488-4:
 Testing sprayed concrete, part 4: Bond strength of cores by direct tension
- EN 14488-5:
 Testing sprayed concrete, part 5: Determination of energy absorption capacity of fibre reinforced slab specimens
- EN 14488-6:
 Testing sprayed concrete, part 6: Thickness of concrete substrate
- EN 14488-7:
 Testing sprayed concrete, part 7: Fibre content of fibre reinforced concrete
- EN 14489-1:
 Fibres for concrete, part 1:
 steel fibres - Definitions, specifications and conformity
ABOUT BEKAERT

Bekaert is active worldwide in selected applications of its two core competences: advanced metal transformation and advanced materials and coatings. The combination of these competences makes Bekaert very unique. Bekaert, headquartered in Belgium, is a technological leader and serves a worldwide customer base in a variety of industry sectors.

BUILDING WITH BEKAERT

Bekaert products are widely used in the construction sector. Dramix® has given Bekaert a leading position in the market of steel fibre concrete reinforcement. In 1979, Bekaert introduced Dramix® steel fibres for concrete reinforcement, designed to offer an easy-to-use alternative for traditional steel mesh and bar reinforcement. Applications of Dramix® steel fibres include industrial floors, precast elements, tunneling and mining, residential applications and public works.

Other Bekaert building products

- Murfor® - masonry reinforcement
- Stucanet® - plastering mesh
- Widra® - corner beads
- Mesh Track - road reinforcement

Modifications reserved. All details describe our products and solutions in general form only. For ordering and design only use official specifications and documents.
© 2008 Bekaert